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Tutorial 3
Bayesian data analysis
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Goals of tutorials
My aim is to 
• present overview of Bayesian and probabilistic modeling
• cover basic Bayesian methodology relevant to nuclear physics, 

especially cross section evaluation
• point way to how to do it

• convince you that 
► Bayesian analysis is a reasonable approach to coping with 

measurement uncertainty

• Many thanks to my T-16 colleagues
► Gerry Hale, Toshihiko Kawano, Patrick Talou
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Outline – four tutorials
1. Bayesian approach

probability – quantifies our degree of uncertainty
Bayes law and prior probabilities

2. Bayesian modeling
Peelle’s pertinent puzzle
Monte Carlo techniques; quasi-Monte Carlo 
Bayesian update of cross sections using Jezebel criticality expt.

3. Bayesian data analysis
linear fits to data with Bayesian interpretation
uncertainty in experimental measurements; systematic errors
treatment of outliers, discrepant data

4. Bayesian calculations 
Markov chain Monte Carlo technique
analysis of Rossi traces; alpha curve
background estimation in spectral data
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Slides and bibliography
► These slides can be obtained by going to my public web page:

http://public.lanl.gov/kmh/talks/
• link to tutorial slides
• short bibliography relevant to topics covered in tutorial
• other presentations, which contain more detail about material presented here 

► Noteworthy books:
• D. Sivia, Data Analysis: A Bayesian Tutorial (1996); lucid pedagogical 

development of the Bayesian approach with an experimental physics slant
• D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear 

Science and Technology (1991); lots of good advice relevant to 
cross-section evaluation

• G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Review, 
(World Scientific, New Jersey, 2003); Bayesian philosophy 

• A. Gelman et al., Bayesian Data Analysis (1995); statisticians’ view
• W. R. Gilks et al., Markov Chain Monte Carlo in Practice (1996); basic 

MCMC text
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Types of measurement uncertainties
• Generally two major types of uncertainties

► random uncertainty – different for each measurement of same quantity
• in repeated measurements, get a different answer each time
• often assumed to be statistically independent, but aren’t always

► systematic uncertainty – same for each measurement within a group
• component of measurements that remains unchanged
• for example, caused by error in calibration or zeroing
• this kind of uncertainty needs more attention 

• Nomenclature varies 
► physics – random uncertainty and systematic uncertainty
► statistics – random and bias

• metrology standards (NIST, ASME, ISO) –
random and systematic uncertainties (now)

► trend toward quoting standard error
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Measurement uncertainties in cross sections
In cross-section experiments, sources of uncertainties include:
• Random uncertainties

► counting statistics for primary process and monitoring process
► background

• Systematic uncertainties
► integrated beam intensity
► target thickness, target impurities
► detector efficiency
► count rate corrections
► geometry
► corrections for contamination from other processes

• Try to reduce systematic uncertainties through calibration, design
• Random uncertainties usually easy to assess; 

systematic uncertainties require judgment
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Characterization of measurement uncertainties
• The best analysis is based on a thorough understanding of 

probabilistic nature of the fluctuations in the data
• In nuclear physics we are fortunate to have control over 

measurements; we can calibrate and study apparatus
• Look closely at measurements to characterize random fluctuations

► shape of pdf
► standard deviation (variance) of fluctuations,
► presence of outliers
► covariance, correlation:
► usually need to assume stationarity, same characteristics everywhere
► autocorrelation function useful for estimating correlations

ρ( ) ( ) ( )l y i y i l
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Neutron fission cross section data for 239Pu
• Graph shows 16 measurements 

of fission cross-section for 
239Pu at 14.7 MeV

• Data exhibit fair amount of 
scatter

• Quoted error bars get smaller 
with time

• Minimum  χ2 = 44.6 (p = 10-4) 
indicates a problem 
► dispersion of data larger than 

quoted error bars by factor  
► outliers?; three data contribute 

24 to χ2, more than half 
44.6

3
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Neutron fission cross-section data 

• Neutron cross sections measured by many experimenters
► sometimes data sets differ significantly 
► often little information about uncertainties, esp. systematic errors
► many directly measure ratios of cross sections, e.g., 243Am/ 235U
► thorough analysis must take into account all discrepancies

243Am fission 
cross section

plot from P. Talou
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Inference using Bayes rule  
• We wish to infer the parameters a of a model M, based on data d
• Use Bayes rule, which gives the posterior:

► where I represents general information we have about the situation
► p(d | a, M, I) is the likelihood, the probability of the observed data, 

given the parameters, model, and general info
► p(a | M, I) is the prior, which represents what we know about the 

parameters exclusive of the data
• Note that inference requires specification of the prior

( | ) ( | ) ( | )a d d a  a∝p ,M,I p ,M, I p M,I
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Likelihood
• Form of the likelihood p(d |a, I) based on how we model the 

uncertainties in the measurements d
• Choose pdf that appropriately describes uncertainties in data

► Gaussian – good generic choice
► Poisson – counting experiments
► Binomial – binary measurements (coin toss …)

• Outliers exist
► likelihood should have a long tail, i.e., there is some probability of 

large fluctuation
• Systematic errors

► caused by effects common to many (all) measurements
► model by introducing variable that affects many (all) 

measurements; marginalize out
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The model and parameter inference
• We write the model as

► where y is a vector of physical quantities, which is modeled 
as a function of the independent variables vector x and
a represents the parameter vector for the model

• In inference, the aim is to determine:
► the parameters a from a set of n measurements di of y under 

specified conditions xi

► and the uncertainties in the parameter values
• This process is called parameter inference, model fitting (or 

regression); however, uncertainty analysis 
is often not done, only parameters estimated

( , )=y y x a
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The likelihood and chi-squared
• The form of the likelihood p(d |a, I) depends on how we model 

the uncertainties in the measurements d
• Assuming the error in each measurement di is normally 

(Gaussian) distributed with zero mean and variance σi
2, and that 

the errors are statistically independent,

• where yi is the value predicted for parameter set a
• The above exponent is one-half chi squared

• For this error model, likelihood is 
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Likelihood analysis
• For a non-informative uniform prior, 

the posterior is proportional to the likelihood
• Given the relationship between chi-squared and the likelihood, 

the posterior is

• Parameter estimation based on maximum likelihood is 
equivalent to that based on minimum chi squared  (or  least 
squares)

21
2( | ) ( | ) exp( )p p χ∝ ∝ −a d d a
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Likelihood analysis – chi squared  
• When the errors in each measurement are Gaussian distributed and

independent, likelihood is related to chi squared:

• near minimum, χ2 is approximately quadratic in the parameters a

► where â is the parameter vector at minimum χ2 and
K is the χ2 curvature matrix (aka the Hessian)

• The covariance matrix for the uncertainties in the estimated 
parameters is
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Characterization of chi squared  
• Expand vector y around y0, and approximate:

• The derivative matrix is called the Jacobian, J
• Estimated parameters â minimize χ2 (MAP estimate)
• As a function of a, χ2 is approximately quadratic in a – â

► where K is the χ2 curvature matrix (aka the Hessian);

• Jacobian useful for finding min. χ2 , i.e., optimization
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Multiple data sets and Gaussian prior
• Analysis of multiple data sets 

► to combine the data from multiple, independent data sets into a 
single analysis, the combined chi squared is 

► where p(dk | a, I) is the likelihood from kth data set
• Include Gaussian priors through Bayes theorem  

► for a Gaussian prior on a parameter aj

► where ãj is the default value for aj and σj
2 is assumed variance 

2 2
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Chi-squared distribution 
• Plot shows χ2 distribution for 

number of degrees of freedom, 
ν = 100

• Generally, 
► mean = ν
► rms dev = 

• Cumulative distribution gives p
value, probability of χ2 ≥ observed 
value

• p often used a measure of 
goodness of fit

• Checks self-consistency of models 
used to explain data (weakly)

2 /ν
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Goodness of fit
• Check of minimum chi-squared value only weakly confirms 

validity of models used
• Chi-squared value depends on numerous factors:

► assumption that errors follow Gaussian distribution and are 
statistically independent

► proper assignment of standard deviation of errors
► correctness of model used to calculate measured quantity
► measurements correspond to calculated quantity (proper 

measurement model)
• Thus, a reasonable chi-squared p value does not necessarily 

mean everything is OK, because there may be compensating 
effects
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Fit linear function to data – minimum χ2

• Linear model:  
• Simulate 10 data points, 

exact values:
• Determine parameters, intercept 

a and slope b, by minimizing chi-
squared (standard least-squares 
analysis)

• Result:  

• Strong correlations between 
parameters a and b

= +y a bx

ˆ 0.484=a 0.127aσ =
ˆ 0.523=b 0.044bσ =

2
min 4.04 0.775χ = =p

1 0.867
0.867 1

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

R

0.2σ =y

0.5=a 0.5=b

Best fit10 data points

Scatter plot
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Sampling from correlated normal distribution 
• Want to draw samples x from multi-variate normal distribution 

with known covariance Cx

• Important to include correlations among uncertainties, i.e., off-
diagonal elements

• Algorithm: 
► perform eigenanalysis of covariance matrix of d dimensions

where U is orthogonal matrix of eigenvectors and
Λ is the diagonal matrix of eigenvalues

► draw d samples from unit variance normal distribution, ξi

► scale this vector by λi
½

► transform vector into parameter space using the eigenvector matrix
► to summarize:

TUΛUCx =

ξΛUx 1/2=
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Linear fit – uncertainty visualization
• Uncertainties in parameters are 

represented by Gaussian pdf in 2-D 
parameter space
► correlations evidenced by tilt in 

scatter plot
► points are samples from pdf

• Should focus on implied 
uncertainties in physical domain
► model realizations drawn from 

parameter uncertainty pdf
► these appear plausible –

called model checking
► this comparison to the original data 

confirms model adequacy
► called predictive distribution

12 MC samples

Scatter plot
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Linear fit – correlations are important
• Plots show what happens if off-

diagonal terms of covariance 
matrix are ignored

• Correlation matrix is

• Model realizations show much 
wider dispersion than consistent 
with uncertainties in data

• No tilt in scatter plot – uncorrelated 
• Correlations are important !

1 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

R

12 MC samples

Scatter plot
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Probabilistic model for additive error
• Represent systematic additive uncertainty in measurements by 

common additive offset D:
► where the εi represent the random fluctuations 

• Bayes law gives joint pdf for all the parameters

where priors p(a), p(b) are uniform and p(D) assumed normal
• Writing                                            and assuming normal 

distributions

• Pdf for x obtained by integration: 

• This model equivalent to standard least-squares approach by 
including D in fit, and using just results for a and b

= ( ; )i i i i iy a + bx = f x a,bε ε+ + Δ + + Δ
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Linear fit – systematic uncertainty
• Introduce systematic offset D

with uncertainty
• Linear model:  
• Determine parameters, a, b, and 

offset D by minimizing chi-
squared (standard least-squares 
analysis)

• Result:  

• Same parameters, but     much 
larger

= + + Δy a bx

ˆ 0Δ =
0.326aσ =

ˆ 0.523=b

σ a

1 0.338
0.338 1

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

R

0.3σΔ =

0.044bσ =

ˆ 0.484=a

Best fit

Systematic 
error bar
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Linear fit – systematic uncertainty
• Show uncertainties in inferred 

models
► colored lines are model 

realizations drawn from parameter 
uncertainty pdf

► these appear plausible, 
considering additional systematic 
uncertainty, 0.3σΔ =

Systematic 
error bar



28

Role of simulated data
• Simulated data are crucially important for testing algorithms

► treat simulated data as is actual measurements
► can compare algorithmic results with known true values
► can test how well algorithm copes with specific data 

deficiencies
► aid in debugging computer code, underlying ideas

• Important to mimic real data
► characteristics of measurement fluctuations (noise)
► limited resolution (blur) of signal
► systematic effects
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Linear fit to many data
• Linear model:  
• Simulate 1000 data points, 

exact values:
• Determine parameters by 

minimizing chi-squared
• Result:  

• Standard errors are reduced by 
factor of 10 through data averaging

• Is this reasonable?

= +y a bx

ˆ 0.496a = 0.0126aσ =
ˆ 0.499b = 0.0044bσ =

2
min 972.0 0.717pχ = =

1 0.866
0.866 1

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

R

0.2σ =y

0.5=a 0.5=b

12 MC samples

Best fit1000 data points
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Linear fit to many data - systematic uncertainty
• Introduce systematic offset D

with uncertainty
• Linear model:  
• Determine parameters, a, b, 

and offset D by minimizing 
chi-squared (standard least-
squares analysis)

• Result:  

• Same fit, but      dominated by
• Uncertainty in slope still small

= + + Δy a bx

ˆ 0Δ =
0.300σ =a

ˆ 0.499b =
1 0.036

0.036 1
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
R

0.3σΔ =

0.0044bσ =

ˆ 0.496a =

σ a σΔ
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Outliers
• Measurements that differ from 

true value by more than expected
• Often caused by mistakes

► every experimenter knows 
mistakes happen!

• Can accommodate in likelihood 
function by including long tail

• Simple model: likelihood is 
mixture of two Gaussians 

• Long tail includes possibility of 
large deviation from true value

• Outlier-tolerant analysis generally 
called “robust estimation”

2 2

2 2

( ) ( )(1 ) exp exp
2 2

x m x mβ β
σ γσ

⎧ ⎫ ⎧ ⎫− −
− − + −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
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Linear fit – outliers
• Outliers pose significant problem 

for min χ2 algorithm
• Create outlier by artificially 

perturbing third point
• Min-χ2 results in large shift of fitted 

line:  

• Two-Gaussian likelihood handles 
outlier very well
► fit is nearly the same as before

ˆ 0.987a = 0.180aσ =
ˆ 0.402b = 0.062σ =b

2 15
min 85.6 10pχ −= =

Gaussian - best fit

ˆ 0.494a = 0.140aσ =
ˆ 0.520b = 0.043bσ =

2 Gaussians - best fit



33

239Pu cross sections – Gaussian likelihood
• With Gaussian likelihood 

(min χ2) yields
► χ2 = 44.7, p = 0.009% for 15 DOF

2.441 ± 0.013
► implausibly small uncertainty 

given three smallest uncerts. 
≈ 0.027

• Each datum reduces the standard 
error of result, even if it does not 
agree with it!
► consequence of Gaussian likelihood

► independent of where data lie!
which doesn’t make sense

2 2

1

n

i
i

σ σ− −

=

= ∑
Gaussian: 2.441 ± 0.013
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239Pu cross sections – outlier-tolerant likelihood
• Use just latest five measurements
• Compare results from alternative 

likelihoods:
► Gaussian: 2.430 ± 0.015
χ2 = 13.88, p = 0.8% for 4 DOF

► two Gaussians: 2.427 ± 0.018 
• For two-Gaussian likelihood: 

► result not pulled as hard by outlier
► σ is not as small, seemingly taking 

into account discrepant nature of 
data

Two Gaussians:
2.427 ± 0.018

Gaussian:
2.430 ± 0.015
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239Pu cross sections – outlier-tolerant likelihood
• Use just latest five measurements
• To exaggerate outlier problem, set 

all standard errors = 0.027
• Compare results from alternative 

likelihoods:
► Gaussian: 2.489 ± 0.012
χ2 = 69.9, p = 2×10-14 for 4 DOF

► two Gaussians: 2.430 ± 0.022 
• For two-Gaussian likelihood: 

► result is close to cluster of three 
points; outliers have little effect

► uncertainty is plausible 

Two Gaussians:
2.430 ± 0.022

Gaussian:
2.489 ± 0.012
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239Pu cross sections – outlier-tolerant likelihood
• To exaggerate outlier problem, set 

all standard errors = 0.027, using 
just latest five measurements

• Plot shows pdfs on log scale, which 
shows what is going on with two-
Gaussian likelihood
► long tail of likelihood function for 

outlier does not influence peak 
shape near cluster of three 
measurements; for single Gaussian, 
it would make it narrower

► long tails of likelihood functions 
from cluster allows outlier to 
produce a small secondary peak; 
has little effect on posterior mean

Two Gaussians
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Hierarchical model – scale uncertainties
• When data disagree a lot, we may question 

whether quoted standard errors are correct
• Scale all σ by factor s: 
• Then marginalize over s

• For prior p(s), either use 
noninformative (flat in log(s)) or 
one like shown in plot

• Let the data decide!
• This is called hierarchical model

because properties of one pdf, the 
likelihood, are specified by another pdf

0sσ σ=

( | ) ( , | )dp p s s= ∫a d a d
( | ) ( | , ) ( , )dp p s p s s∝ ∫a d d a a

( | ) ( | , ) ( ) ( )dp p s p p s s∝ ∫a d d a a

Scale factor s
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239Pu cross sections – scale uncertainties
• Accommodate large dispersion in 

data by scaling all σ by factor s: 

• For likelihood, use Gaussian with 
scaled σ

• For prior p(s), use non-informative 
prior for scaling parameter

• Bottom plot shows joint posterior pdf
• Marginalize over s:

to get posterior for x (top plot)
• Result is: 2.441 ± 0.024; 

very plausible uncertainty

0 0 ; quoted stand. err.sσ σ σ= =

joint distribution: p(x, s)( ) 1/p s s∝

2
01( | , ) exp

2n 2p x s
s s

χ⎛ ⎞
∝ −⎜ ⎟

⎝ ⎠
d

( | ) ( | , ) ( ) ( )dp x p x s p x p s s∝ ∫d d
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239Pu cross sections – scale uncertainties
• To obtain the posterior for the scaling 

parameter s, marginalize joint posterior 
over x:

• Plot (top) shows result
► maximum at about 1.7, 

for original fit 
► however, this result is different from 

just scaling σ to make χ2 per DOF unity
► it allows for a distribution in s, taking 

into account that s is uncertain
• This model can be extended to allow 

each σi to be scaled separately
► prior on si could reflect our confidence 

in quoted σi for each experiment

joint distribution: p(x, s)

( | ) ( | , ) ( ) ( )dp s p x s p x p s x∝ ∫d d

2

DOF
χ

≈
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Summary
In this tutorial:
• Types of uncertainties in measurements – random and systematic

• Uniform prior ⇒ likelihood analysis ⇒ χ2 analysis
• Used straight line fit to illustrate various Bayesian concepts and 

models
► posterior sampling; predictive distribution and model checking
► systematic uncertainties
► averaging over many measurements
► outliers

• Studied Pu cross-section data at 14.7 MeV
► outlier-tolerant likelihood
► scaling of quoted standard errors using a distribution of scales, 

which is determined by input data


